

●Can convert decision
tree into a rule set

 Straightforward, but rule
set overly complex

 More effective
conversions are not
trivial

●Instead, can generate
rule set directly

 For each class in turn
find rule set that covers
all instances in it
(excluding instances not
in the class)

●Called a covering
approach:

 At each stage a rule is
identified that “covers”
some of the instances

2

●Possible rule set for class “b”:

●Could add more rules, get “perfect”
rule set

 3

If x > 1.2

then class = a

If x > 1.2 and y > 2.6

then class = a

If ???

then class = a

If x 1.2 then class = b

If x > 1.2 and y 2.6 then class = b

Corresponding decision tree:

(produces exactly the same

 predictions)

●But rule sets can be clearer when
decision trees suffer from
replicated subtrees

●Also, in multiclass situations,
covering algorithm concentrates
on one class at a time whereas
decision tree learner takes all
classes into account

4

●Generates a rule by

adding tests that

maximize rule’s

accuracy

●Similar to situation in

decision trees:

problem of selecting

an attribute to split on

But decision tree

inducer maximizes

overall purity

●Each new test

reduces

rule’s coverage

5

●Goal: Maximize

Accuracy

 t total number of

instances covered by

rule

 p positive examples of

the class covered by

rule

 t – p number of errors

made by rule

Select test that

maximizes the ratio p/t

●We are finished when

p/t = 1 or the set of

instances can’t be split

any further
 6

●Rule we seek:

●Possible tests:

7

4/12 Tear production rate = Normal

0/12 Tear production rate = Reduced

4/12 Astigmatism = yes

0/12 Astigmatism = no

1/12 Spectacle prescription = Hypermetrope

3/12 Spectacle prescription = Myope

1/8 Age = Presbyopic

1/8 Age = Pre-presbyopic

2/8 Age = Young

If ?

 then recommendation = hard

●Rule with best test added:

●Instances covered by modified

rule

8

None Reduced Yes Hypermetrope Pre-presbyopic

None Normal Yes Hypermetrope Pre-presbyopic

None Reduced Yes Myope Presbyopic

Hard Normal Yes Myope Presbyopic

None Reduced Yes Hypermetrope Presbyopic

None Normal Yes Hypermetrope Presbyopic

Hard Normal Yes Myope Pre-presbyopic

None Reduced Yes Myope Pre-presbyopic

hard Normal Yes Hypermetrope Young

None Reduced Yes Hypermetrope Young

Hard Normal Yes Myope Young

None Reduced Yes Myope Young

Recommended
lenses

Tear production
rate

Astigmatism Spectacle prescription Age

If astigmatism = yes

 then recommendation = hard

●Current state:

●Possible tests:

9

4/6 Tear production rate = Normal

0/6 Tear production rate = Reduced

1/6 Spectacle prescription = Hypermetrope

3/6 Spectacle prescription = Myope

1/4 Age = Presbyopic

1/4 Age = Pre-presbyopic

2/4 Age = Young

If astigmatism = yes

 and ?

 then recommendation = hard

●Rule with best test added:

●Instances covered by modified

rule:

10

None Normal Yes Hypermetrope Pre-presbyopic
Hard Normal Yes Myope Presbyopic
None Normal Yes Hypermetrope Presbyopic

Hard Normal Yes Myope Pre-presbyopic
hard Normal Yes Hypermetrope Young
Hard Normal Yes Myope Young

Recommended
lenses

Tear production
rate

Astigmatism Spectacle prescription Age

If astigmatism = yes

 and tear production rate = normal

then recommendation = hard

●Current state:

●Possible tests:

●Tie between the first
and the fourth test

 We choose the one with
greater coverage

11

1/3 Spectacle prescription = Hypermetrope

3/3 Spectacle prescription = Myope

1/2 Age = Presbyopic

1/2 Age = Pre-presbyopic

2/2 Age = Young

If astigmatism = yes

 and tear production rate = normal

 and ?

then recommendation = hard

●Final rule:

●Second rule for
recommending “hard
lenses”:
(built from instances not
covered by first rule)

●These two rules cover
all “hard lenses”:

 The process is then
repeated with other two
classes

12

If astigmatism = yes

and tear production rate = normal

and spectacle prescription = myope

then recommendation = hard

If age = young and astigmatism = yes

and tear production rate = normal

then recommendation = hard

13

For each class C

 Initialize E to the instance set

 While E contains instances in class C

 Create a rule R with an empty left-hand side that predicts class C

 Until R is perfect (or there are no more attributes to use) do

 For each attribute A not mentioned in R, and each value v,

 Consider adding the condition A = v to the left-hand side of R

 Select A and v to maximize the accuracy p/t

 (break ties by choosing the condition with the largest p)

 Add A = v to R

 Remove the instances covered by R from E

●PRISM with outer loop
removed generates a
decision list for one
class

 Subsequent rules are
designed for rules that
are not covered by
previous rules

 But: order doesn’t
matter because all rules
predict the same class

●Outer loop considers
all classes separately

 No order dependence
implied

●Problems: overlapping
rules, default rule
required

14

●Methods like PRISM

(for dealing with one

class) are separate-

and-conquer

algorithms:

 First, identify a useful

rule

 Then, separate out all

the instances it covers

 Finally, “conquer” the

remaining instances

●Difference to divide-

and-conquer methods:

 Subset covered by rule

doesn’t need to be

explored any further
 15

●Common treatment of missing values:

for any test, they fail
●Algorithm must either

●Use other tests to separate out positive instances

●Leave them uncovered until later in the process

●In some cases it’s better to treat “missing” as a

separate value

●Numeric attributes are treated just like they are in

decision trees

16

●Two main strategies:
●Incremental pruning

●Global pruning

●Other difference: pruning criterion
●Error on hold-out set (reduced-error pruning)

●Statistical significance

●MDL principle

17

●For statistical validity, must evaluate measure on

data not used for training:
●This requires a growing set and a pruning set

●Reduced-error pruning :

Build full rule set and then prune it

●Incremental reduced-error pruning :

Simplify each rule as soon as it is built
●Can re-split data after rule has been pruned

●Stratification advantageous

18

●Generating rules for classes in order
●Start with the smallest class

●Leave the largest class covered by the default rule

●Stopping criterion
●Stop rule production if accuracy becomes too low

●Rule learner RIPPER:
●Uses MDL-based stopping criterion

●Employs post-processing step to modify rules guided by

MDL criterion

19

●RIPPER: Repeated Incremental Pruning to Produce Error

Reduction (does global optimization in an efficient way)

Classes are processed in order of increasing size

Initial rule set for each class is generated using IREP

●An MDL-based stopping condition is used

●Once a rule set has been produced for each class, each

rule is re-considered and two variants are produced

●One is an extended version, one is grown from scratch

●Chooses among three candidates according to DL

●Final clean-up step greedily deletes rules to minimize DL

20

●Avoids global optimization step used in

C4.5rules and RIPPER

●Builds a partial decision tree to obtain a rule

●Uses C4.5’s procedures to build a tree

21

●Make leaf with maximum coverage into a

rule

●Treat missing values just as C4.5 does
●i.e. split instance into pieces

●Time taken to generate a rule:
●Worst case: same as for building a pruned tree

●Occurs when data is noisy

●Best case: same as for building a single rule

●Occurs when data is noise free

22

1.Given: a way of generating a single good rule

2.Then it’s easy to generate rules with exceptions

3.Select default class for top-level rule

4.Generate a good rule for one of the remaining

classes

5.Apply this method recursively to the two subsets

produced by the rule (i.e. instances that are covered/not

covered)

23

